migration
Our editors will review what you’ve submitted and determine whether to revise the article.
- Key People:
- George Gaylord Simpson
- Jack Miner
- Related Topics:
- flyway
- anadromous fish
- oceanodromous fish
- Mississippi Flyway
- catadromous fish
Recent News
migration, in ethology, the regular, usually seasonal, movement of all or part of an animal population to and from a given area. Familiar migrants include many birds; hoofed animals, especially in East Africa and in the Arctic tundra; bats; whales and porpoises; seals; and fishes, such as salmon.
Migration can be contrasted with emigration, which involves a change in location not necessarily followed by a return journey; invasion or interruption, both of which involve the appearance and subsequent disappearance of great numbers of animals at irregular times and locations; and range expansion, which tends to enlarge the distribution of a species, particularly its breeding area.
The migration cycle is often annual and thus closely linked with the cyclic pattern of the seasons. The migration of most birds and mammals and many of the fishes are on a yearly cycle. In many cases (e.g., salmon and eels), animals with a relatively long life span return to their place of birth in order to reproduce and eventually die. In other cases, as in certain invertebrates, where the animal has a relatively brief life span and reproduces rapidly, migrations may not occur in every generation. The daily movements of certain fishes and invertebrates have also been called migrations because of their regular occurrence. This type of movement, however, is not to be confused with migration in the strict sense.
Most migrations involve horizontal travel. The distance traversed may be a few miles or several thousands of miles. Some migrations take a vertical direction and involve no appreciable horizontal movement. Certain aquatic animals, for example, move from deep water to the surface according to the season. Certain birds, mammals, and insects migrate altitudinally in mountainous areas, going from the upper zones, where they breed, to the foothills or plains during seasons when the weather is severe and unfavourable. Such vertical travels involve essentially the same type of environmental change as horizontal, or latitudinal, migrations over long distances.
Survey of migratory behaviour in animals
Lower invertebrates
Many marine invertebrates travel considerable distances during certain seasons. A large proportion of them, however—particularly planktonic organisms, plant and animal aquatic drifters—do not travel deliberately but are carried by ocean currents. Planktonic organisms also travel vertically in a daily rhythm. Very small or microscopic animals remain at great depths during the day and rise at dusk, concentrating in the upper layers of water during the night. Their predators, particularly fishes, follow them in their cycle. The daily activity of pelagic birds (those living on the open sea), such as petrels and shearwaters, which feed on planktonic crustaceans and squids, follows this same rhythm.
A seasonal change of habitat, analogous to migration, is made by some Polychaeta (sandworms). Along the coast of Europe, clam worms (Nereis) live during the colder months in rock crevices and among algae. During the summer, however, they become planktonic and swim out some distance from the coast, where reproduction occurs. In the South Pacific, near Samoa and Fiji, the palolo worm (Palola siciliensis) lives among coral reefs, where it develops posterior segments filled with genital (reproductive) cells. These are cast off, and the worm rises to the surface. The phenomenon occurs regularly on the first day of the last quarter of the October–November moon.
Some of the best-known migrations among the invertebrates occur in crustaceans during the reproductive period, when some of them travel as far as 240 kilometres (150 miles). Generally in the crabs, females move into shallow coastal waters to mate and to lay their eggs. After the eggs have been laid, the females return to deep water.
Some freshwater crabs, such as the Chinese crab (Eriocheir sinensis), after remaining for three to five years in fresh water, migrate to brackish water, where mating occurs. Females with eggs externally attached then travel to the sea and remain a few miles offshore for several months during winter. The following spring they enter shallower water near the shore. Here the eggs hatch. Young crabs spend a year in brackish water and migrate upstream the following spring, settling in fresh water and growing to maturity.
Some crabs, such as robber crabs (Birgus) and land crabs of tropical regions (Geocarcinus), have adapted to life on land. They migrate to the sea to reproduce and then return inland and are followed at a later time by the young.